152 research outputs found

    Master-slave second order sliding mode control for microgrids

    Get PDF
    This paper deals with the design of advanced control strategies of sliding mode type for microgrids. Each distributed generation unit (DGu), constituting the considered microgrid, can work in both grid-connected and islanded operation mode. The DGu is affected by load variations, nonlinearities and unavoidable modelling uncertainties, because of the presence of a voltage-sourced-converter (VSC) as interface with the main grid. This kind of uncertainty terms makes the sliding mode controller perfectly fitting the control problem to solve. In particular, a second order sliding mode (SOSM) control scheme, belonging to the class of Suboptimal SOSM control, is proposed. Moreover, in order to face some undesired overshoot on the currents fed into the load, due to the reconnection to the main grid, as well as to step variations of current references, a constrained SOSM control is designed. Simulation results confirm that the proposed robust controllers provide closed-loop performance complying with the IEEE recommendations for power systems

    Adaptive suboptimal second-order sliding mode control for microgrids

    Get PDF
    This paper deals with the design of adaptive suboptimal second-order sliding mode (ASSOSM) control laws for grid-connected microgrids. Due to the presence of the inverter, of unpredicted load changes, of switching among different renewable energy sources, and of electrical parameters variations, the microgrid model is usually affected by uncertain terms which are bounded, but with unknown upper bounds. To theoretically frame the control problem, the class of second-order systems in Brunovsky canonical form, characterised by the presence of matched uncertain terms with unknown bounds, is first considered. Four adaptive strategies are designed, analysed and compared to select the most effective ones to be applied to the microgrid case study. In the first two strategies, the control amplitude is continuously adjusted, so as to arrive at dominating the effect of the uncertainty on the controlled system. When a suitable control amplitude is attained, the origin of the state space of the auxiliary system becomes attractive. In the other two strategies, a suitable blend between two components, one mainly working during the reaching phase, the other being the predominant one in a vicinity of the sliding manifold, is generated, so as to reduce the control amplitude in steady state. The microgrid system in a grid-connected operation mode, controlled via the selected ASSOSM control strategies, exhibits appreciable stability properties, as proved theoretically and shown in simulation

    Design of robust Higher Order Sliding Mode control for microgrids

    Get PDF
    This paper deals with the design of advanced control strategies of sliding mode type for microgrids. Each distributed generation unit (DGu), constituting the considered microgrid, can work in both grid-connected operation mode (GCOM) and islanded operation mode (IOM). The DGu is affected by load variations, nonlinearities and unavoidable modelling uncertainties. This makes sliding mode control particularly suitable as a solution methodology for the considered problem. In particular, a second order sliding mode (SOSM) control algorithm, belonging to the class of Suboptimal SOSM control, is proposed for both GCOM and IOM, while a third-order sliding mode (3-SM) algorithm is designed only for IOM, in order to achieve, also in this case, satisfactory chattering alleviation. The microgrid system controlled via the proposed sliding mode control laws exhibits appreciable stability properties, which are formally analyzed in the paper. Simulation results also confirm that the obtained closed-loop performances comply with the IEEE recommendations for power systems

    Event-Triggered Sliding Mode control algorithms for a class of uncertain nonlinear systems: Experimental assessment

    Get PDF
    An experimental assessment of the recently introduced event-triggered sliding mode control approach is presented in this paper. The major design requirement, in this approach, is to reduce the number of transmissions over the network, while guaranteeing that the sliding mode control is stabilizing with appropriate robustness in front of matched uncertainties. In the present paper a novel Event-Triggered Sliding Mode Control algorithm is first introduced and discussed and then it is compared with two different Model-Based Event-Triggered Sliding Mode Control algorithms. Finally, their experimental assessment is reported, obtaining satisfactory performance consistent with the theoretical treatment and fulfilling all the design requirements

    Decentralized Sliding Mode Control of Islanded AC Microgrids with Arbitrary Topology

    Get PDF
    The present paper deals with modelling of complex microgrids and the design of advanced control strategies of sliding mode type to control them in a decentralized way. More specifically, the model of a microgrid including several distributed generation units (DGus), connected according to an arbitrary complex and meshed topology, and working in islanded operation mode (IOM), is proposed. Moreover, it takes into account all the connection line parameters and it is affected by unknown load dynamics, nonlinearities and unavoidable modelling uncertainties, which make sliding mode control algorithms suitable to solve the considered control problem. Then, a decentralized second order sliding mode (SOSM) control scheme, based on the Suboptimal algorithm is designed for each DGu. The overall control scheme is theoretically analyzed, proving the asymptotic stability of the whole microgrid system. Simulation results confirm the effectiveness of the proposed control approach

    Second order sliding mode control for nonlinear affine systems with quantized uncertainty

    Get PDF
    This paper deals with the design of a Second-Order Sliding Mode (SOSM) control algorithm able to enhance the closed-loop performance depending on the current working conditions. The novelty of the proposed approach is the design of a nonsmooth switching line, based on the quantization of the uncertainties affecting the system. The quantized uncertainty levels allow one to define nested box sets in the auxiliary state space, i.e., the space of the sliding variable and its first time derivative, and select suitable control amplitudes for each set, in order to guarantee the convergence of the sliding variable to the sliding manifold in a finite time. The proposed algorithm is theoretically analyzed, proving the existence of an upperbound of the reaching time to the origin through the considered quantization levels

    Exponential Stability and Local ISS for DC Networks

    Get PDF
    In this letter, we consider the problem of regulating the voltage of an islanded Direct Current (DC) network subject to (i) unknown ZIP-loads, i.e., nonlinear loads with the parallel combination of constant impedance (Z), current (I) and power (P) components, and (ii) unknown time-varying disturbances. Using the port-Hamiltonian framework, two decentralized passivity-based control schemes are designed. It is shown that, using the proposed controllers, the desired equilibrium is exponentially stable and local input-to-state stable (LISS) with respect to unknown time-varying disturbances

    Third order sliding mode voltage control in microgrids

    Get PDF
    In this paper, we propose a robust voltage control scheme for microgrids based on a suitable designed third-order sliding mode (3-SM) controller. The use of 3-SM allows to reject matched disturbances and unmodeled dynamics, due to the presence of a voltage-sourced-converter (VSC) as interface with the main grid. The motivation for using a 3-SM control approach, apart from its property of providing robustness to the scheme in front of a significant class of uncertainties, is also given by its capability of enforcing sliding modes of the controlled system with chattering alleviation. The microgrid system controlled via the proposed 3-SM approach proves to exhibit appreciable stability properties. Specifically, the voltage error with respect to the required reference is steered to zero in a finite time. The comparison with respect to second order sliding mode (SOSM) and PI controllers shows the beneficial effects of the proposed strategy, and simulation results confirm that our control law provides closed-loop performance complying with the IEEE recommendations for power systems

    Modeling and Passivity Properties of District Heating Systems

    Get PDF
    We propose a comprehensive nonlinear ODE-based thermo-hydraulic model of a district heating system featuring several heat producers, consumers and storage devices which are interconnected through a distribution network of meshed topology whose temperature dynamics are explicitly considered. Moreover, we analyze the conditions under which the hydraulic and thermal subsystems of the model exhibit shifted passivity properties. For the hydraulic subsystem, our claims on passivity draw on the monotonicity of the vector field associated to the DH system's flow dynamics, which mainly codifies viscous friction effects on the system's pressures. For the temperature dynamics, we propose a storage function based on the {\em ectropy function} of a thermodynamic system, recently used in the passivity analysis of heat exchanger networks
    • …
    corecore